

Scéim MharcálaScrúdú na hArdteistiméireachta 2006FisicGnáthleibhéalMarking SchemeLeaving Certificate Examination 2006PhysicsOrdinary Level

Introduction

In considering this marking scheme the following points should be noted.

- 1. In many instances only key words are given, words that must appear in the correct context in the candidate's answer in order to merit the assigned marks.
- 2. Marks shown in brackets represent marks awarded for partial answers as indicated in the scheme.
- 3. Words, expressions or statements separated by a solidus, /, are alternatives which are equally acceptable.
- 4. Answers that are separated by a double solidus, //, are answers which are mutually exclusive. A partial answer from one side of the // may not be taken in conjunction with a partial answer from the other side.
- 5. The descriptions, methods and definitions in the scheme are not exhaustive and alternative valid answers are acceptable.
- 6. The context and the manner in which the question is asked and the number of marks assigned to the answer in the examination paper determine the detail required in any question. Therefore, in any instance, it may vary from year to year.

Section A

Three questions to be answered.

Question 1	40 marks		
(i) Draw a label labelled diag	led diagram of the ram to show	apparatus used in the experiment.	6 +2 × 3
runway 2 trolleys timer device detail e.g. me	e.g. tickertimer / ph eans of attaching tro	// air track // 2 riders otogates (and timer) / powdertrack / motio olleys or of trolleys moving apart	6 on sensor
NOTE: no labels	deduct 2	an	y two lines 2×3
(ii) How did the used (electro partial answe	student measure t nic) balance / (weig r e.g. mentions spir	the mass of the trolleys? (hing) scales / weighed them al spring	6 or 3 6 (3)
(iii) Explain how	v the student calcu	lated the velocity of the trolleys.	3×3
(velocity =)	$\frac{\text{distance}}{\text{time}}$ / $\frac{s}{t}$		3×3
measure dista measure time reference to a	ance and time / measure distance a datalogger would	/ use formula merit at least 2×3	(2×3) (3)
(iv) How did the mass × velo mass / velo	e student determin city city / using the equa	e the momentum of the trolleys?	2 × 3 2×3 (3)
(v) How did the momentum b partial answe	student verify the efore = momentum r e.g. momentum be	principle of conservation of momentum after efore / momentum after	7 or 4 7 (4)

Question 2 40 marks

A student carried out an experiment to verify Snell's law of refraction by measuring the angle of incidence i and the angle of refraction r for a ray of light entering a glass block. The student repeated this procedure two more times. The data recorded by the student is shown in the table.

(i) Draw a labelled diagram of the apparatus used in the experiment.	$6+2\times 3$
labelled diagram to show	
glass block	6
pins / raybox	3
protractor / sheet of paper / detail	3
incorrect experiment, maximum mark 6 + 3	
NOTE: no labels, deduct 2	
(ii) Describe how the student found the position of the refracted ray.	3×3
draw the incident ray / mark the point of incidence	3
draw the emerging ray / mark the point of exit	3
join	3
a diagram may merit full marks	
(iii) How did the student measure the angle of refraction?	4 or 2

n) How did the student measure the angle of refraction?	40	r 2	ł
	using a protractor // by measuring the angle between the normal and the refracted ray	у	4	ŀ
	partial answer e.g. identifies the angle of refraction		(2))

6 + 3

 2×3

(3)

(iv) Copy this table and complete it in your answerbook.

angle of incidence <i>i</i>	angle of refraction r	sin <i>i</i>	sin r	sin i sin r
30°	19°	0.500	0.326	1.53
45°	28°	0.707	0.469	1.51
65°	37°	0.906	0.602	1.50

any correct row	//	any correct column	6
other correct rows	//	other correct columns	3

(v) Use the data to verify Snell's law of refraction.

$\sin i \propto \sin r$	$\frac{1}{1} = constant$	2×3
	s1n <i>r</i>	

partial answer e.g. $i \propto r$

page 2

Question 3 40 marks

(i) Draw a labelled diagram of the apparatus used in the experiment. string means of tightening means of changing frequency e.g. tuning forks / frequency generator means of varying length e.g. bridge detail e.g. means of detecting resonance	4 × 3
any four line	$s 4 \times 3$
NOTE: no labels, deduct 2	
(ii) Indicate on your diagram the length of the string that was measured. distance between bridges partial answer e.g. reference to bridge	6 or 3 6 (3)
(iii) Describe how the student set the string vibrating. placed a vibrating tuning fork on the bridge // turned on frequency generator partial answer e.g. pluck it / using a tuning fork	7 or 4 7 (4)
(iv) How did the student know the string was vibrating at its fundamental frequency? paper rider falls off / (string) vibrates vigorously / emits sound / resonates / pitch the same as the tuning fork partial answer e.g. by ear	6 or 3 6 (3)
(v) Draw a sketch of the graph expected in this experiment. straight line through origin one axis correctly labelled	6 + 3 6 3

Question 4 40 marks

(i) How did the student measure the resistance of the wire? ohmmeter / multimeter	6 or 3 6
partial answer e.g. reference to measuring voltage or current / resistance meter	(3)
(ii) Describe with the aid of a diagram, how the student varied the temperature of the wire.	6 + 3
heat source	6
wire in water bath / thermometer in water bath	3
(iii) Using the data in the table, draw a graph on graph paper of the resistance of	
the conductor against temperature. Put temperature on the horizontal (X-axis	s) 4 × 3
label axes correctly, (name / symbol / unit acceptable)	3
plot three points correctly	3
plot another three points correctly	3
straight line	3

if graph paper is not used / graph through the origin, maximum mark 3×3 if temperature is on the Y-axis, maximum mark 3×3

(iv) Use the graph to estimate the temperature of the conductor when its resistance	
is 50 Ω.	7 or 4
30 - 33 (°C) / answer consistent with graph	7
evidence of using the graph at 50 Ω	(4)
(v) What does your graph tell you about the relationship between the resistance	
of a metallic conductor and its temperature?	6 or 3
linear / correct relationship consistent with part (iii) above	6
partial answer	(3)

SECTION B (280 Marks) Five questions to be answered

Question 5 Take the <u>best 8</u>	any <i>eight</i> parts <u>8</u> from 10 parts	56 marks	
(a) A person p Calculate 7500 (J) / 7 partial answ	ushed a car a distance o the work done by the p '.5 (kJ) wer e.g. incomplete substi	of 15 m with a force of 500 N. Derson. ($W = Fs$) itution into the equation	7 or 4 7 (4)
(b) Which one of a liquid hydrometer	of the following instrum barometer	nents can be used to measure the hydrometer thermome	density ter 7 7
(c) What is fri force (whic partial ans	ction? ch) opposes motion wer e.g. force / opposes /	incomplete answer / example	7 or 4 7 (4)
(d) Give one ex resistance partial ans	xample of a thermometr / emf / voltage / colour / wer e.g. definition of the	tic property. volume / length / pressure, etc. rmometric property	any one 7 (4)
(e) Copy and a concave	complete in your answe mirror forms an image	rbook the following diagram to sl of object O.	now how 7 or 4
Image	0F	correct image forme one ray drawn corre	d 7 ct (4)
(f) Give one us measure an demonstra partial ans	e of a spectrometer. ngles/ measure waveleng te diffraction / demonstra wer e.g. spectrometer dia	th of light / demonstrate interferenc ate spectra / chemical analysis, etc. gram	e / 7 (4)
(g) Name the e variable res partial ans	electrical component representation / rheostat / potentio wer e.g. resistor / thermis	presented in the diagram. meter stor or function	7 or 4 7 (4)
(h) State Ohm $V \propto I / T$ V / T / R / T	$'s law. V = I R \infty $		7 or 4 7 (4)
(<i>i</i>) Give one us store charge store energy partial answ	e of a capacitor. e / (radio) tuning / filterin y / flash camera / phone c ver e.g. storing electric cu	ng / smoothing / timing / coupling / charger, etc. urrent	7 or 4 7 (4)
(j) Give two pr (small) mas outside the	coperties of the electron ss $/9.1 \times 10^{-31}$ kg, (negative nucleus, deflected by ele	• e) charge/1.6× 10 ⁻¹⁹ , orbits the nucle ectric / magnetic fields, etc.	7 or 4 eus, any two 7 any one (4)

Question 6 56 marks

Define the term force and give the un	it in which force is measured.	3×3
causes / changes	// changes	3
acceleration	// velocity / momentum	3
F = ma		(2×3)
partial answer e.g. example		(3)
N/ newton		3
Force is a vector quantity. Explain w	hat this means.	6 or 3
(quantity with magnitude and) direction	n	6
partial answer e.g. magnitude		(3)
Give two factors which affect the size	e of the gravitation force between two	bodies. $6+3$
distance	tw	o correct 6+3
	on	e correct (6)
partial answer e.g. gravitational constant	nt / G / weight	(3)
Explain the term acceleration due to	gravity, g	6 + 3
object in free fall / due to the pull/weig	ght of the earth	6
increase in velocity per second / chang	ge in velocity per second	3
partial answer e.g. speeding up / weigh	t / 9.8	(3)
Use this data to show that the acceler	cation due to gravity on the surface of	
the moon is 1.6 m s ⁻²	8 .	3×3
calculates value for g moon 1.63 (m s ^{-2})	3×3
correct substitution into $s = ut + \frac{1}{2} at^2$	/ $1.6 = 0 + \frac{1}{2} a(1.4)^2$	(2×3)
partial answer e.g. incomplete substitut	ion into the equation	(3)
The astronaut has a mass of 120 kg.	Calculate his weight on the surface of	2 2
the moon. $(120)(1.0) / (102.0)$		2×3
(120)(1.0) / 192 (N)	tion into the equation	2×3
partial answer e.g. incomplete substitut	ion into the equation	(3)
Why is the astronaut's weight greate	r on earth than on the moon?	5 or 3
acceleration due to gravity is greater or	n the earth // mass of the earth is greater t	than
the mass of the moon		5
partial answer e.g. reference to (acceler	ration due to) gravity // different masses	
of earth and moon		(3)
The earth is surrounded by a layer o	f air, called its atmosphere. Explain w	hy
the moon does not have an atmosphe	ere.	3
(acceleration due to) gravity is less / ma	ass (of the moon) is less	3

Question 7			56	marks
What is convection? Name two other ways movement of heat / by circulation/current / partial e.g. incomplete answer / example conduction radiation a labelled diagram may merit marks	s of transfe // hot air // rises	r ring heat. // cold air // sinks		4 × 3 3 (3) 3 3
Describe an experiment to demonstrate con apparatus: beaker, liquid, dye, heat source procedure: add the dye to the liquid and heat observation/conclusion: convection current vi accept valid alternatives a labelled diagram may merit full marks convection in a gas, maximum 3×3	nvection in	a liquid.	any three any one	4 × 3 2×3 (3) 3 3
Why is insulation used to surround the brid be used as insulation. prevent /reduce heat loss / energy loss partial answer	cks? Name	a material that co	ould	4 × 3 3 (3)
any named insulator e.g. fibre glass / rockwoo partial answer e.g. lagging	ol / cotton w	vool / aerogel etc.		2×3 (3)
Explain how the storage heater heats the air convection// hot air risescurrents// cold air replaces in partial answer	ir in the roo // bric t // hear	om. ks heat by night t released to the air	by day	2 × 4 4 (4)
The total mass of the bricks in the storage capacity is 1500 J kg ⁻¹ K ⁻¹ . During a ten-ho rose from 15 °C to 300 °C. Calculate (i) the energy gained by the brick	heater is 80 ur period t <s; (ii)="" p<="" td="" the=""><td>) kg and their spec he temperature of power of the heating</td><td>cific heat f the bricks ng coil.</td><td>4 × 3</td></s;>) kg and their spec he temperature of power of the heating	cific heat f the bricks ng coil.	4 × 3
(i) the energy gained by the bricks $Q = m c \Delta \theta = (80)(1500)(285) / 34 200 00$ two quantities substituted correctly into the one quantity substituted correctly into the	00 (J) / 34.2 ne equation equation /	(MJ) 285		3×3 (2×3) (3)
(ii) the power of the heating coil $(P = \frac{W}{t}) \frac{3420000}{(10)(60)(60)} / 950 \text{ (W)} // \text{ answ}$	wer consiste	ent with (i)		3

Question 8 56 marks

Describe, using diagrams, the difference between transverse waves and	
longitudinal waves.	2(6 or 3)
property e.g. transverse waves vibrate perpendicular to the direction of motion /	
transverse waves may be polarised / longitudinal waves cannot be polarised /	
longitudinal waves vibrate parallel to the direction of motion	6
partial answer e.g. can travel through vacuum	(3)
description e.g. diagram / converse of stated property	6
partial answer	(3)
a labelled diagram may merit full marks	
The speed of sound depends on the medium through which the sound is	
travelling. Explain how sound travels through a medium.	6 + 3
energy / vibrations // waves	6
transferred from particle to particle // longitudinal	3
partial answer	(3)
a labelled diagram may merit full marks	
Describe an experiment to demonstrate that sound requires a medium to tra	vel 5×3
apparatus: sealed container / jar	3
sound source / bell	3
pump	3
procedure: pump out the air	3
observation/conclusion: loudness decreases as air is removed	3
accept valid alternatives	
a labelled diagram may merit full marks	
A ship detects the seabed by reflecting a pulse of high frequency sound from the seabed. The sound pulse is detected 0.4 s after it was sent out and the spe of sound in water is 1500 m s^{-1} .	eed
Calculate	5×3
(i) the time taken for the pulse to reach the seabed;	
0.2 s	3
(ii) the depth of the water under the ship	
300 (m) // answer consistent with part (i)	2×3
partial answer e.g. incomplete substitution into the equation $s = v t // 7500$	(3)
(iii) the wavelength of the sound pulse when its frequency is 50 000 Hz	0.0
0.03 (m)	2×3
partial answer e.g. incomplete substitution into the equation $c = f \lambda$	(3)
Why is the speed of sound greater in water than in air?	5 or 3
particles are closer together / greater density	5
partial answer e.g. reference to density / better conductor of sound	(3)

Question 9 56 marks

(i) What is meant by fission? Name a material in v	which fission occurs.	$2 \times 3 + 6$
splitting / break up nucleus (into two)		3
releasing energy / releasing neutrons / releasing ra	adiation / into 2 smaller (nuclei)	3
Uranium / U // Plutonium / Pu		6
(ii) Describe how a chain reaction occurs in the fu	el rods.	
Explain how the chain reaction is controlled.		5×3
neutron		3
splits a nucleus		3
releasing more neutrons		3
partial answer e.g. continuous fission		(3)
a labelled diagram may merit full marks		
control rods	// moderator	3
move up / move down /absorb neutrons	// slows down neutrons	3
		5
(iii) What is the purpose of the shielding? Name a	material that is used as shield	ing. 4 × 3
prevent	// protect	3
radiation (escaping)	// humans / environment	3
concrete, lead	any one	2×3
partial answer e.g. iron / named metal		(3)
(iv) Describe what happens to the coolant when th	e reactor is working.	5 or 3
absorbs heat / gets hot	8	5
partial answer e.g. it circulates / regulates tempe	rature	(3)
		_
(v) Give one effect of a nuclear fission reactor on t	he environment.	6 or 3
pollution / nuclear waste		6 (2)
partial answer e.g. dangerous		(3)
(vi) Give one precaution that should be taken whe	n storing radioactive material	s. 6 or 3
store in lead / use a tongs when handling / use sa	afety signs / locked room, etc.	6
partial answer e.g. store in a safe place		(3)

Question 10 56 marks

What is a magnetic field? region / area /space	$\frac{2 \times 3}{3}$
where iron is attracted / magnetic effect is felt	3
Describe an experiment to show the magnetic field due to a current in a soleno apparatus: power source, closed circuit/ solenoid, compasses / iron filings any tw any or	bid. 4×3 wo 2×3 ne (3)
procedure: turn on the current observation/conclusion: compass direction changes / iron filings rearrange /arrows shown on field lines accept valid alternatives a labelled diagram may merit full marks	3
Give one use of an electromagnet. State one advantage of an electromagnet over an ordinary magnet. electric bell / scrap yard crane / speaker / induction coil / doorbell / relay / etc. partial answer e.g. in TV / radio	6 + 3 6 (3)
can be turned off / can be varied / can be stronger etc.	3
When the switch is closed the aluminium foil experiences an upward force.	
Name a device based on this effect. (electric) motor / meter /speaker partial answer e.g. radio	6 or 3 6 (3)
 Describe what happens if (i) the current flows in the opposite direction; force / foil moves downward / in the opposite direction 	5 × 3 3 3
(ii) a larger current flows through the aluminium foil; greater / bigger force / jump	33
(iii) the aluminium foil is placed parallel to the magnetic field. no force / no movement / nothing	3
Calculate the force on the aluminium foil of length 10 cm if a current of 1.5 A flows through it when it is placed in a magnetic field of flux density 3.0 T. $F = (1.5)(0.1)(3) = 0.45$ (N)	8 or 6 or 3 8
correctly substitutes two quantities into the equation $F = ILB$ partial answer e.g. correct matching of a quantity and its symbol	(6) (3)

Question 11 56 marks

Read this passage and answer the questions below.

Electricity is so much part of modern living that we often take it for granted. It is a powerful and versatile energy of great use in the home but can be dangerous if not used properly. The electricity connection into your home comes through the ESB main fuse and the ESB meter. Almost all new electrical appliances now come complete with a fitted 13 Amp, 3-pin plug. Remember, a wrongly wired plug can result in a serious or fatal accident. The first thing to know is the colour code for connecting the cables to the appropriate pin/terminal in the plug. The cables consist of a metal conductor covered in coloured plastic.

When wiring a plug it is most important that all the screw connections are fully tightened. You should leave a little extra slack on the earth wire. You must also fit the correct size fuse. When an appliance is *double insulated* it does not need to be earthed. These appliances will only have two wires, the brown live and the blue neutral, they do not have an earth wire.

(Adapted from *The Safe Use Of Electricity In The Home* by The ESB.)

(a)	Give one use for electricity in the home. heating / cooking / lighting /named electrical appliance etc.	7 7
(b)	What is the function of the ESB meter? record units used / enable customer costing	7 7
(c)	What will happen when a current of 20 A flows through a fuse marked 13 A? fuse blows / current stops / switch trips	7 7
(<i>d</i>)	Give one safety precaution that should be taken when wiring a plug. screw connections are fully tightened / leave extra slack on the earth wire / fit the correct size fuse / ensure to match the colour codes	7 7
(e)	What is the colour of the earth wire in an electric cable? green and yellow	7 7
(f)	Name a common material used to conduct electricity in electric cables. copper / aluminium	7 7
(g)	Why is the coating on electric cables made from plastic? insulator / safety	7 7
(h)	Why are some appliances not earthed? they are double insulated / they have insulated housing	7 7

56 marks

Part (a) Define the moment of a force. force (multiplied) by distance partial answer e.g. force (multiplied) by / distance	6 or 3 6 (3)
Give one condition that is necessary for the crane to be in equilibrium. clockwise moments equal anticlockwise moments partial answer e.g. it is balanced	2 × 3 3 (3)
What is the moment of the 9000 N concrete slab about the axis of the crane? 90 000 (N m) partial answer e.g. 9000 by 10	6 or 3 6 (3)
Calculate the value of the load marked X. 3000 (N) partial answer e.g. 30X	6 or 3 6 (3)
A crane is an example of a lever. Give another example of a lever. crowbar / nailbar / nutcracker / wheelbarrow / tongs / door handle /	4
weighing scales / tools, etc.	4

Part (b)

Question 12

The diagram shows the relative positions of electromagnetic radiations in terms of their wavelength.

gamma rays	A	UV	light	IR	microwaves	В
------------	---	----	-------	----	------------	---

(i)	Name the radiations marked A and B. A = X-rays	2×3
	B = radiowaves / VHF / UHF etc.	3
	partial answer e.g. names correct but in the reverse order	(3)
(ii)	Give one property which is common to all electromagnetic radiations. travel at the speed of light / same speed / can travel through vacuum / diffrac	6 or 3 ction /
	interference / transverse waves / refracted / reflected /forms of energy, etc. partial answer e.g. waves	any one 6 (3)
(iii)) Which one of the radiations has the shortest wavelength? gamma	6
(iv)	Describe how IR radiation is detected.	6 or 3
	thermometer / heat sensor / photographic film	6
	partial answer e.g. refers to temperature / heat	(3)
(v)	Give one use for microwaves. ovens/cooking_communications/satellite_TV / mobile_phones / weather_rada	4 ar /
	missile guidance / remote control / research / speed gun etc.	any one 4

Part (c) Explain why the gold leaf deflects when the zinc is given a negative char like charges / electrons	·ge.	6+3
repel	two correct	6+3
partial answer	one correct	(6) (3)
UV radiation is then shone on the zinc and the gold leaf falls. Explain we electrons / charge (are) emitted from zinc / metal (cap) / leaf partial answer	hy.	3 × 3 3 3 (3)
What is observed when the experiment is repeated using IR radiation? leaf does not collapse / nothing changed partial answer e.g. nothing		6 or 3 6 (3)
Give one application of the photoelectric effect. photocell / burglar alarms / smoke alarms / automatic doors/ machine safety	switches etc	4 . 4

Part(d) A <u>semiconductor</u> material can be o	doped to form a <u>p-n junction</u> (semiconduc	tor diode).
Explain the underlined terms.		$2(2 \times 3)$
a semiconductor has a resistivity / co	onductivity	3
between a conductor and an insulato	r / changes (rapidly) with temperature	3
partial answer e.g. has a big resistand	ce / not a good conductor	(3)
(p-n junction is the) region connectin	ng p-type (semiconductor)	3
to an n-type semiconductor		3
partial answer e.g. mention of junction	on voltage / depletion layer / holes / free elec	ctrons/
intrinsic/ extrinsic		(3)
a diagram may merit full marks		
Name a material used as a semicor	nductor.	6 or 3
Silicon / Si, germanium / Ge, Alumi	nium nitride, Boron nitride, etc. any	one 6
partial answer e.g. any other element	t with four electrons in its outer shell	(3)
The circuit diagram shows 2 semic connected to a 6 V d.c. supply.	conductor diodes and 2 bulbs, labelled A a	nd B,
What is observed when the switch	is closed? Explain why?	$4+2\times 3$
(bulb) B lights	// (bulb) A does not light	4
diode near B	// diode near A	3
conducts / forward biased	// does not conduct / reverse biased	3